

FY06 Strand R&D Tasks and Proposals for LARP

E. Barzi

- o **Mission**
- Experimental setups and resources available
- o Specs and procurement
- Characterization procedures
- o **Summary**

Mission

o SUPPORT THE MAGNET PROGRAM

- * Strand specs and procurement
- * Strand characterization procedures and selection

Experimental setups available

o FNAL: 15/17 T, 1800 A; 14/16 T, 1000 A (by May '05)

STRAND

LARP

Low resistivity probe (< 40 nOhm) for Ic Balanced coil magnetometer for magnetization (15 T max) Probe for Ic tests under transverse pressure, 15 tons max CABLE

28 kA SC transformer for tests at self-field (1.8 T)

o BNL: 11.5 T, 1200 for VH, 1500 A for VI

STRAND

Low resistivity probe (~ 25 nOhm) for Ic Squid magnetometer for magnetization (5 T max) CABLE

Cable test facility, 7 T max, 25 kA max

o LBNL: 15 T, 2000 A

STRAND

Low resistivity probe (< 30 nOhm) for Ic

o CERN: Fresca facility, 10 T max, 32 kA (40 kA w/transformer)

Human Resources available

LARP

o FNAL:

Scientists & Engineers:

Barzi

Turrioni

Del Frate (up to 09/05, maybe extended)

2 Technicians

o **BNL**:

Scientists:

Ghosh

2-3 Technicians

o LBNL:

Scientists:

Dietderich

Student?

UNSTABLE CONDUCTOR (STRAND)

 $y = 4049e^{-0.1825x}$

UNSTABLE CONDUCTOR (CABLE)

SPECS

STABLE CONDUCTOR

Js (1.9 K) > Jc(12 T, 1.9 K)

Js = min Jq when sweeping the field

Could CDP focus on LARP conductor needs?

OST is making good progress

108/127 design Jc ~2200-2300 A/mm2

Js > 4000 A/mm2

Procurement

6 to 9 months in advance of need

				Conductor,	Coil	Strand
Item	Item Description			kg	completion	delivery date
1	Replacement conductor for CDP inventory	TQ1a	FY05	30	Jan. 06	12/15/2005
	Replacement conductor for FNAL Base					
2	program inventory	TQ2a	FY05	30	Mar. 06	12/15/2005
3	Strand for 2 more models Type:	TQ1a/2a	FY06	60		12/15/2005 ?
4	Strand for 2 more models Type:	TQ1b/2b	FY06	90	2007	7/15/2006
5	4-layer Quadrupole	TQ1				
6	Backup for FY06 coils (FY07 inventory)		FY06	75		7/15/2006
7	Long SM coil, 3.6m		FY06	25		12/15/2006
8	Long Cos-q mirror coil, 3.0m		FY06	36		12/15/2006
9	Rad-hard epoxy studies, 2 SM coils		FY06	6		12/15/2006
10	Open-midplane dipole "Proof-of-principle"		FY07	100		12/15/2006

Total (Nb3Sn)	kg	452	k\$ 497.2
---------------	----	-----	-----------

Characterization Procedures

- * What are the PROCEDURES we intend to follow to find out the information we need on the strands and cables to be used in the model magnets.
- * Whenever such information is not available, due for instance to materials still under procurement, provide EXPECTATIONS based on existing results on similar materials

PROCEDURES

- * VI and VH of round and extracted strands between 1.9 K and 4.2 K
 - * RRR of round and extracted strands
- * Magnetization of round and extracted strands between 1.9 K and 4.2 K

TO ACCELERATE THE PROCESS, SIMULATE CABLING BY ROLLING

- * VI and VH on rolled strands between 1.9 K and 4.2 K
- * RRR of rolled strands

FOR EFFECT OF TRANSVERSE PRESSURE

* Use FNAL setup between 1.9 K and 4.2 K

PROCEDURES

Cable Stability vs. SS limits

CABLING SIMULATION BY ROLLING

LARP

FIRST PIT BY SMI